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Abstract: .

Intelligent Driver Model (IDM):

Calibration Problem and Objective Function:

Methodology:

This work explores the challenges associated with calibrating parameters of 
microscopic models with aggregate speed data, e.g., obtained from roadside 
sensors. Using the Intelligent Driver Model, we explore how reliably parameters 
that do not influence the equilibrium flow (i.e., the Fundamental Diagram), but do 
control the stability of those equilibria, can be determined from aggregate speed 
data. Using a carefully controlled computational setup, we show that standard loss 
functions used for calibrating microsimulation models can perform poorly when the 
true parameters result in an unstable traffic state. Precisely, it is found that all of the 
considered loss functions frequently return different and incorrect parameter sets 
that minimize the expected value of the loss function. These results highlight the 
need for improved loss functions, or even fundamental additions to the model 
calibration procedure. 

IDM and the Fundamental Diagram (FD):
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In order to describe the trajectories of individual vehicles, each vehicle is modeled 
via an ordinary differential equation that either describes the vehicle velocity (first 
order models), or the velocity and acceleration (second-order models). Second-
order car-following models are of the form

Simulation Experiment:

[1]

The IDM is a special case of  [1]  and reads

where 𝑠∗ 𝑣, ∆𝑣 is given by [3]

[2]

[3]

Road traffic is always in a specific state that is characterized by the flow rate, traffic
density and the mean speed. We combine all the possible homogeneous and 
stationary traffic states in an equilibrium function that can be described graphically 
by three diagrams known as the Fundamental Diagram. IDM has been shown to 
have robust fit when compared to measured controlled traffic data,.(Fig. 1). 

We have shown that under equilibrium conditions, the factors 𝑎 and 𝑏 do not affect 
the shape of the FD. Put differently, this means finding the equilibrium spacing 
function 𝑠"#(𝑣), that gives an equilibrium spacing value for a given speed. For 𝑎 >
0, the equilibrium spacing function reads

[4]

FIGURE 1: Fit of IDM on real data

Microscopic calibration commonly means that a certain model structure is postulated with a handful of free parameters that 
are to be fitted so that the model reproduces available measurement data suitably well. Specifically, the “best fit'' parameters
are determined as the solution of an optimization problem of the form:

[5]

where 𝜃 are the free decision variables to be determined, 𝜆 are (non-free) hyper-parameters that are known a-priori, 𝑌$"%& are the 
measurement data 𝑌'() are the corresponding data generated by a stochastic simulated model under a given parameter choice 
and 𝐿 is a loss function that defines a suitable distance between data and model prediction. While the data is range agnostic, in 
this work, however, we use macroscopic measurements (e.g., from roadside sensors such as inductive loops or radar units) as 
our input data. Moreover, we restrict to car-following calibration, i.e., we do not consider perimeters associated with origin 
destination calibration or lane changing logic. 

IDM PARAMETERS 𝑣* = 30 ; 𝑇 = 1; 𝑠*= 2 ; 𝛿 = 4; 𝜎 = 0.1

NETWORK GEOMETRY Single lane road of length 2100 m with a single sensor placed at 𝑥 = 500 𝑚

TRAFFIC FLOW CONDITIONS Free flow inflow rate = 2250 vehicles/hour;  Congested outflow rate =1600 vehicles/hour

SIMULATOR SETTINGS Simulator: Flow;  Run time: 1800 s;  fidelity: 30 s; step: 0.4 s; # per sim: 50

OPTIMIZER STUDIED Nelder-Mead (Best), Least Squares, SLSQP, Powell, Newton-CG, COBYLA 

TABLE 0: Summary of simulation set up and settings

1. Influence of stochastic forcing and existence of model instability

2. RMSE loss function to recover true parameters and sensitivity to true parameters 

3. Performance of Various Loss Functions

[6]

FIGURE 4: Three time space diagrams colored by speed in (m/s) produced from identical simulations except for the random seed, with (𝑎, 
𝑏) = (1.2, 1.3). Waves are present and small variations occur in the phase and amplitude of the waves. 

Figure 5: Illustration of the time series measurements recorded for the three simulations under (𝑎, 𝑏) = (0.5, 1.3) 
(left) and (𝑎, 𝑏) = (1.2, 1.3) (right). 

Figure 6: a) Histogram of RMSE loss function evaluations comparing a holdout 𝑌𝑠𝑖𝑚 generated under the true parameters (𝑎, 𝑏) = (0.5, 
1.3).  b) Loss function evaluations using 𝐿𝑅𝑀𝑆𝐸 and a true parameter set of (𝑎, 𝑏)=(0.5, 1.2) are shown for every parameter set, 
sorted by order of expected loss. 

Given the simplified experimental setting 
described above, the resulting calibration 
problem stated in (1) amounts to 𝜽 containing 
only 𝑎 and 𝑏, which can then be compared to 
the true 𝑎 and 𝑏 used to generate the data. In 
order to isolate the consequences of the loss 
function from the consequences of the 
optimization solver, here we adopt a brute force 
parameter sweep solution approach (which is 
costly but it eliminates any error in the 
optimization procedure itself). Namely we 
consider solving the optimization problem on a 
fixed grid in the (𝑎, 𝑏) parameter space, by 
varying the parameters in increments of 0.1 
within ranges of [0.5, 1.3] and [1.0, 1.5] 
respectively (with units m/s2, for simplicity 
omitted here and below). As we will illustrate in 
the Results section, the loss function hinders 
the ability to correctly calibrate the model, even 
when solved via a brute force approach. To 
evaluate the loss function under a given 
parameter set 𝜽, suppose a total of 𝑀
simulations are conducted. Then, the effective 
loss function between the simulated data for 
this 𝜽 and real data is given by  [6] .


