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Introduction: 
We investigate spontaneous platoon formation in heterogeneous traffic flow consisting 
of human-driven (HVs) and autonomous vehicles (AVs) in different behavior 
scenarios through simulation experiments. Our study reveals that platoons may form 
spontaneously, and platooning properties are associated with the behaviors of AVs. 
We conduct the simulation experiments through a parsimonious Cellular Automata 
model (we develop a software for this purpose), which captures the different 
characters of AVs and HVs as well as their interactions. AVs are endowed with 
neighbor awareness and opportunistic behaviors. We observe that, intriguingly, even 
with this relatively simple model, AVs form into platoons without centralized control. 
Such phenomena may relate to the intrinsic incentives that AVs perceive and their 
ability to tell neighbor vehicle types. Our findings indicate the potential of regulating 
future heterogeneous traffic flow through decentralized agent behavior design.

.

Cellular Automata Model for Traffic Flow:

Autonomous Vehicles Behavior Design: Exp 1: Heterogeneous Dynamics Under Constant Traffic Densities:

Exp 2: Equilibrium Relation and Dynamics Under Varying Traffic Densities:
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Cellular Automata (CA) is a computational model where each agent occupies a cell, 
and has its behavior is determined by its own state and the state of other agents in its 
neighborhood. Nagel and Schreckenberg (1992) were the first to use this technique to 
model traffic flow.  Their model comprises a system of vehicles which evolve over 
linear time in accordance to rules:

In our project, we adapt the Nagel-Schreckenberg Cellular Automaton model to introduce a model of mixed traffic flow of 
HVs and AVs that captures three potential behaviors of AVs – opportunistic, neighbor awareness and baseline behavior. 
We distinguish between the two class of vehicles in our simulation by assigning different behavioral parameters - braking 
probability, lane changing probability, maximum speed - and methods - traversal velocity functions- to each vehicle type 
and model.
Opportunistic model: AVs require well defined instructions in the form of algorithms and optimization functions to make 
decisions while driving. This level of algorithmic control on the decision making of AVs imply that such vehicles can 
achieve idealized traffic flow parameters that cannot be attained by HVs, which behave erratically. This type of erratic
behavior does not apply to AVs, who make their decisions of accelerating/deceleration and lane changing solely based on 
safety and opportunity. 

𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 = 𝟎;𝑷 𝒍𝒂𝒏𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 = 𝟏; 𝒗𝒂𝒗(𝒕 + 𝟏) = 𝒎𝒊𝒏(𝒗𝒂𝒗(𝒕) + 𝟏, 𝒔𝒍𝒗, 𝒗𝒎𝒂𝒙𝒂𝒗 , 𝒗𝒔𝒍)
Neighbor Awareness model: AVs can communicate with each other and the surrounding using V2X technology. We 
hypothesize that these "neighbor aware" AVs would behave differently depending on the type of vehicle they are trailing. 
An AV trailing another AV can maintain a shorter headway due to their inter-connectivity and, hence, can maintain a higher 
speed; such phenomenon would not be seen if the leading vehicle is a HV.

𝒗𝒎𝒂𝒙𝑳 = 9
𝒗𝒂𝒂 , 𝒊𝒇 𝑨𝑽 − 𝑨𝑽
𝒗𝒂𝒉, 𝒊𝒇 𝑨𝑽 − 𝑯𝑽

𝒗𝒉 , 𝒊𝒇 𝑯𝑽
𝒗𝒂𝒂 > 𝒗𝒂𝒉 ≥ 𝒗𝒉

𝒗𝒂𝒗(𝒕 + 𝟏) = 𝒎𝒊𝒏(𝒗𝒂𝒗(𝒕) + 𝟏, 𝒔𝒍𝒗, 𝒗𝒎𝒂𝒙𝑳 , 𝒗𝒔𝒍) - 𝜹(𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 ); 𝜹 𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 = [𝟎, 𝟏]
Neighbor Awareness and Opportunistic model: Such AVs shows both Opportunistic and Neighbor Aware behavior.

𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 = 𝟎;𝑷 𝒍𝒂𝒏𝒆 𝒄𝒉𝒂𝒏𝒈𝒆 = 𝟏; 𝒗𝒂𝒗 𝒕 + 𝟏 = 𝒎𝒊𝒏 𝒗𝒂𝒗 𝒕 + 𝟏, 𝒔𝒍𝒗, 𝒗𝒎𝒂𝒙𝑳 , 𝒗𝒔𝒍
Baseline Model: In this model AVs behave exactly like an HV, with their behavior being indistinguishable from one 
another. Traditional CA rules described in Fig. 1 were implemented to encapsulate such behavior in addition to the 
following constraints imposed by the uniformity of the two classes. 

𝒗 𝒕 + 𝟏 = 𝒎𝒊𝒏 𝒗𝒂𝒗 𝒕 + 𝟏, 𝒔𝒍𝒗, 𝒗𝒎𝒂𝒙, 𝒗𝒔𝒍 − 𝜹 𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 ; 𝜹 𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 = [𝟎, 𝟏]
Baseline Headway Model: Such AVs behave like the baseline model with the exception that these AVs can maintain 
smaller headways than HVs, i.e. 𝑣)*+*, > 𝑣)*+-, .

𝒗 𝒕 + 𝟏 = 𝒎𝒊𝒏 𝒗𝒂𝒗 𝒕 + 𝟏, 𝒔𝒍𝒗, 𝒗𝒎𝒂𝒙, 𝒗𝒔𝒍 − 𝜹 𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 ; 𝜹 𝑷 𝒃𝒓𝒂𝒌𝒊𝒏𝒈 = [𝟎, 𝟏]

Self-Organization Phenomenon:

Fig 2: Rules for CA models for traffic flow

Fig 1: Road - Car grid in Cellular Automata

Each update of the system, requires all the vehicles to follow these rules simultaneously, 
with each vehicle first deciding whether to change lane before deciding how much to 
move forward; this order of decision making is fundamental to the CA model.

Simulation and Analysis Software:

Simulation Experiments:

Fig 3: Graphical User Interface of the software

Upon observation of several different simulation cases, we discovered that AVs under certain models and situations 
displayed strong self-organized phenomenon. There were two types of self-organized events that were most 
prominent: AVs moving closely together but in different lanes and AVs moving closely together in the same lane. We 
hypothesize that the formation of clusters is natural due to the opportunistic nature of AVs, modeled through both its 
gap seeking and braking behavior. We study the effects of such self-organization on overall traffic flow and how 
different  AV behaviors affect such phenomenon.

We have developed a  GUI 
software capable of simulating 
different heterogenous traffic 
flow scenarios with different AV 
behaviors. To create our model, 
we used principles of OOP with 
the main objects being two 
Abstract Data Structures: Road 
and Car. The software allows the 
user to track different key 
parameters of traffic flow and 
later creates a .txt file of those 
recorded parameters. This data is
various plots and statistics for the

Fig 13: AV Lane Change Rates

Fig 5: A screen capture of the simulation showing a cluster of 6 
AVs (red). [Periodic Boundaries]

Fig 6: Another screen capture from the simulation showing self-
organized lane of 7 AVs (red) .[Periodic Boundaries]

sent to the analysis part of the software to generate
user. This software is written entirely in Python3.

We conduct two simulation experiments with the purpose of studying the impact of the five AV behaviors on the overall 
traffic flow and better understand any emergent patterns of collective behavior. In both the experiments, we consider a 
circular road with three lanes (periodic boundary conditions) with each lane comprising of 100 cells. The vehicle objects 
follow their respective set of behavior rules. For each simulation, the road starts from empty state. N Vehicles are then 
distributed randomly on the road with zero initial velocity; the vehicle type is determined stochastically upon allocation, 
following a binomial distribution with the probability of a vehicle being an AV (i.e. percentage of AVs) being 30%.
For the first experiment, we simulate the traffic 
flow for each of these models for the same number 
of simulation time steps (1200) for three different 
densities: 0.08, 0.2 and 0.6. These densities are 
normalized such that a state density of 1 represents 
jam density. 
For the second experiment, we increase our system 
density linearly till it reaches the jam density. We 
allow the simulation to run for a fixed number of 
time steps (100) for each system density before 
incrementing it

Fig 4: Table of parameter values used in the five test cases of 
Experiment 1 and 2

Fig 14: HV Lane Change Rates Fig 15: Overall Lane Change Rates

Fig 16: FD of Baseline Model Fig 17: FD of Neighbor Aware and 
Opportunistic Model

Fig 18: FD of Opportunistic Model

The experiments confirm the impacts of individual AV behaviors on platooning in heterogeneous traffic flow. These 
findings suggest that the platooning does indeed improve traffic flow by allowing opportunistic neighbor aware AVs to 
seek and trail one another and maintain shorter headways leading to higher speeds for the AV class and more open space 
for the HV class, which they may use to travel at higher speeds. Such AV behavior also leads to interesting lane change 
dynamics, where the movement of AVs with respect to HVs mimic those of shepherd dogs herding sheep. The AVs keep 
the HVs in check by forming prominent self-organized clusters which prevent the HVs from changing lanes.

These results verify our initial hypothesis behind the clustering phenomenon neighbor aware and opportunistic AV agents 
benefit the most from trailing other AVs (due to smaller headways) resulting in collective behavior that lead to strong and 
prominent clustering phenomenon. It further proves that clustering is not a random phenomenon but is unique to systems 
involving opportunistic intelligent agents that are capable of recognition. In context of our experiment, it means that if AVs 
are aware of other AVs under ideal occupancy states - low to critical density - they would engage in collective behavior 
without any centralized command and display clustering phenomenon if they share common incentive of being opportunistic. 
This implies that is possible to design AV behavior that can form self-organized clusters. 

Fig 10: Mean no. of Clusters (Low Density)

Fig 8: Average Values (Critical Density) Fig 9:Average Values (High Density)

Fig 11: Mean no. of Clusters (Critical Density) Fig 12: Mean no. of clusters (High Density)

Fig 7: Average Values (Low Density)


