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History

The Koopman operator formalism originated in the early work of Bernard
Koopman in 19311inspired by Quantum Mechanics

It is a classical analog to the quantum evolution operator

This work inspired John von Neumann’s Mean Ergodic Theorem

It provided an alternative formalism for study of dynamical systems

1https://www.pnas.org/content/pnas/17/5/315.full.pdf
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Significance

The use of this operator became very popular in the latter part of the 20th

century. Applications include

Model reduction and fault detection in energy systems for buildings,

Stability assessment in power networks

Extracting spatio-temporal patterns of brain activity

Background detection and object tracking in videos

Design of algorithmic trading strategies in finance

Analysis of numerical algorithms and traffic data

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 4 / 23



Significance - Koopmania

The use of this operator became very popular in the latter part of the 20th

century. Applications include

Model reduction and fault detection in energy systems for buildings,

Stability assessment in power networks

Extracting spatio-temporal patterns of brain activity

Background detection and object tracking in videos

Design of algorithmic trading strategies in finance

Analysis of numerical algorithms and traffic data

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 5 / 23



Your Thoughts

Okay, we get that it is a fancy important operator but what exactly
is it? How does it work?

- You
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Dynamical Systems

Abstract Anatomy: a set of states (S) through which we can index
the evolution of a system

, and a rule (f or T ) for that evolution

Mathematical Anatomy:

ẋ = f (x) | x ∈ S ⊂ Rn, f : S → Rn (1)

x t+1 = T (x t) | x ∈ S ⊂ Rn, t ∈ Z,T : S → S (2)
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ẋ = f (x) | x ∈ S ⊂ Rn, f : S → Rn (1)

x t+1 = T (x t) | x ∈ S ⊂ Rn, t ∈ Z,T : S → S (2)

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 7 / 23



Dynamical Systems

Abstract Anatomy: a set of states (S) through which we can index
the evolution of a system, and a rule (f or T ) for that evolution

Mathematical Anatomy:
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Classical Approach - Geometric Viewpoint

Historically dynamic systems
were studied/developed using a
geometrical viewpoint

Phenomena in dynamic systems
analyzed through tools such as
flow, limit cycles, equilibria,
stability, invariant sets,
attractors, bifurcation

Figure 1: A Phase Space Plot2

2https://www.cmi.ac.in/~debangshu/dynamics.pdf
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Classical Approach - Algorithmic Summary

1 Construct a model for the system in the form of (1) or (2).

2 Try: Find analytical solutions and use them to analyze the dynamics
(i.e. find the attractors, invariant sets, imminent bifurcations, etc)

3 Try: Use approximation techniques to evaluate the qualitative
behavior of the system (e.g. construct Lyapunov functions to prove
the stability of a fixed point)

4 Try: Employ numerical computation and then extract information
from a single or multiple simulated trajectories of the system

5 Try: Give up and cry
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Motivation for an Alternative Approach

Classical Approach not efficient in higher dimensional systems since
problem scales with dimensions

High computational complexities for known models

Formulation does not allow feedback of data from experiments,
observations or simulations

Failure of analyzing systems with high levels of uncertainty in the
state space models

Incompatibility with systems with no known models

Cannot leverage this age of Big Data
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Koopman Operator Formalism

Alternative formalism for study of dynamical systems

data is evaluation of functions of the state
these functions are observables of the system

Example

Consider the unforced motion of an incompressible fluid inside a box

state space → set of all smooth velocity fields on the flow domain
that satisfy the incompressibility condition

rule of evolution → the Euler-Lagrange equations

observables → pressure/vorticity at a given point in the flow domain,
velocity at a set of points

data → pressure and velocity sensor outputs

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 11 / 23



Koopman Operator Formalism

Alternative formalism for study of dynamical systems

data is evaluation of functions of the state
these functions are observables of the system

Example

Consider the unforced motion of an incompressible fluid inside a box

state space → set of all smooth velocity fields on the flow domain
that satisfy the incompressibility condition

rule of evolution → the Euler-Lagrange equations

observables → pressure/vorticity at a given point in the flow domain,
velocity at a set of points

data → pressure and velocity sensor outputs

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 11 / 23



Koopman Operator Formalism

Alternative formalism for study of dynamical systems

data is evaluation of functions of the state
these functions are observables of the system

Example

Consider the unforced motion of an incompressible fluid inside a box

state space → set of all smooth velocity fields on the flow domain
that satisfy the incompressibility condition

rule of evolution → the Euler-Lagrange equations

observables → pressure/vorticity at a given point in the flow domain,
velocity at a set of points

data → pressure and velocity sensor outputs

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 11 / 23



Motivating Question

Given the knowledge of an observable in the form of time series generated
by experiment or simulation, what can we say about the evolution of the
state?
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Koopman Operator

Classical Analog to Quantum Evolution Operator

Unitary operator in Lp Hilbert spaces
Linear rule of evolution

Lifts the dynamics from the state space to the space of observables

Finds a coordinate transform where the dynamics are linear
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Koopman Operator

Consider the discrete time-map (2)

x t+1 = T (x t)

Let g : S → R be a real-valued observable of this dynamical system.

The Koopman Operator U is a linear transformation on the vector space
(collection of all observables) defined as

Ug(x) = g ◦ T (x) (3)

Linearity of U follows from the linearity of the composition operation

U[g1+g2](x) = [g1+g2]◦T (x) = g1◦T (x)+g2◦T (x) = Ug1(x)+Ug2(x)

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 14 / 23



Koopman Operator

Consider the discrete time-map (2)

x t+1 = T (x t)

Let g : S → R be a real-valued observable of this dynamical system.

The Koopman Operator U is a linear transformation on the vector space
(collection of all observables) defined as

Ug(x) = g ◦ T (x) (3)

Linearity of U follows from the linearity of the composition operation

U[g1+g2](x) = [g1+g2]◦T (x) = g1◦T (x)+g2◦T (x) = Ug1(x)+Ug2(x)

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 14 / 23



Koopman Operator

Consider the discrete time-map (2)

x t+1 = T (x t)

Let g : S → R be a real-valued observable of this dynamical system.

The Koopman Operator U is a linear transformation on the vector space
(collection of all observables) defined as

Ug(x) = g ◦ T (x) (3)

Linearity of U follows from the linearity of the composition operation

U[g1+g2](x) = [g1+g2]◦T (x) = g1◦T (x)+g2◦T (x) = Ug1(x)+Ug2(x)

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 14 / 23



Koopman Operator

Consider the discrete time-map (2)

x t+1 = T (x t)

Let g : S → R be a real-valued observable of this dynamical system.

The Koopman Operator U is a linear transformation on the vector space
(collection of all observables) defined as

Ug(x) = g ◦ T (x) (3)

Linearity of U follows from the linearity of the composition operation

U[g1+g2](x) = [g1+g2]◦T (x) = g1◦T (x)+g2◦T (x) = Ug1(x)+Ug2(x)

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 14 / 23



Koopman Operator

Figure 2: Visualization of the Koopman Operator acting on the state space3

3https://arxiv.org/abs/2010.05377
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Koopman Linear Expansion (KLE)

Let φj : S → C be a complex-valued observable of the dynamical system in
(2) and λj a complex number

Eigen-decomposition of U yields

Utφj = eλj tφj (4)

Assume that all the observables of (2) lie in the linear span of such
Koopman eigenfunctions

g(x) =
∞∑
k=0

gkφk(x) (5)

Thus, the evolution of observables

Utg(x) =
∞∑
k=0

gke
λj tφk(x) (6)
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Koopman Linear Expansion (KLE)

∴ The evolution of g has a linear expansion in terms of Koopman
eigenfunctions!

Considering the initial state x = x0, the signal generated by measuring g
over a trajectory

Utg(x0) = g ◦ F t(x0) (7)

Good: sum of sinusoidals and exponentials (linearized system)

Bad: Inifinite sum
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Something Fishy?

Assumption made in deriving KLE holds for a large class of nonlinear
systems

e.g. hyperbolic fixed points, limit cycles and tori as attractors
The spectrum of U consists of only eigenvalues
The associated eigenfunctions span the space of observables

Assumption does not hold for the class of chaotic dynamical systems

Shanto, Sadman Ahmed (USC) PHYS 510 Presentation Fall 2021 18 / 23



Duffing Oscillator

Figure 3: Duffing oscillator model4

4https://ieeexplore.ieee.org/document/8896260
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Duffing Oscillator

Consider the nonlinear Duffing system - a particle in a double potential
well

ẍ = x − x3 (8)

with state space representation

ẋ1 = x2 | ẋ2 = x1 − x31 (9)

Three fixed points

a saddle at the origin
→ λ = ±1
two centers at
(±1, 0)→ λ = ±

√
2i

local linearizations (shaded
regions) around fixed points Figure 4: The Phase Space Plot5

5https://arxiv.org/pdf/2102.12086.pdf
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U on the Duffing Oscillator Problem

Figure 5: Koopman Linearization
Domains5 Figure 6: Koopman Coordinate

Transform5

5https://arxiv.org/pdf/2102.12086.pdf
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For the Culture

Koopman Mode Decomposition (KMD)

integrates data from multiple observables into the Koopman operator
framework

Koopman Continuous Spectrum (KCS)

extends Koopman operator theory to model Chaotic systems

Dynamic Mode Decomposition (DMD) Algorithms

teaches computers physics (our jobs are in danger)
https://www.youtube.com/watch?v=Kap3TZwAsv0&list=

PLMrJAkhIeNNR6DzT17-MM1GHLkuYVjhyt
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Questions?
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