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Variational Quantum Eigensolver (VQE) circuits are an application of the variational method of quantum mechanics used 
to solve problems of finding the eigenvalues of Hermitian operators in systems, where the dimension of the problem 
space grows exponentially. The circuit model is based on the VQE algorithm which uses an ansatze based state 
preparation technique through the use of parameterized circuits. The important property of such variational form is to be 
able to span the set of attainable states which is solely dependent on the ansatz and the classical optimizer utilized. We 
present a study on the various gradient based and gradient free optimizers that can be fitting to this regime and report on 
the efficiency and accuracy of the overall VQE operation for a standardized problem of calculating the smallest 
eigenvalues of a given Hamiltonian. We further explore how the effectiveness of such routine is affected by varying circuit 
depths. We aim to present our efforts in this conference and discuss the planned progression of our study.

Future Work

Methodology

Variational Quantum Eigensolver (VQE)
In many applications, it is important to find the minimum eigenvalue of a matrix. 
For example, such problems arise very frequently in many areas such as 
optimization, quantum simulations, and quantum chemistry. The Variational-
Quantum-Eigensolver (VQE) is a hybrid quantum-classical algorithm that is used 
to resolve such problems. It is an efficient and effective alternative to the Quantum 
Phase Estimation (QPE) algorithm in the present Noisy Intermediate-Scale 
Quantum (NISQ) era of Quantum Computing.

For the purposes of this conference and our study, we define VQE’s functionality 
formally as follows:

Given a Hermitian Matrix, 𝐻, with an unknown minimum eigenvalue,
λ𝑚𝑖𝑛, associated with the eigenstate, |𝜓𝑚𝑖𝑛⟩, VQE provides us an estimate, λ𝜃, 
bounding λ𝑚𝑖𝑛:

𝝀𝒎𝒊𝒏 ≤ 𝝀𝜽 ≡ ⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩
Where |𝜓(𝜃)⟩ is the eigenstate associated with λ𝜃. The algorithms works 
by parameterized circuit, 𝑼(𝜃), to some arbitrary initial state, |𝜓⟩, to obtain an 
estimate 𝑼(𝜃) |𝜓⟩ ≡ |𝜓(θ)⟩ on |𝜓𝑚𝑖𝑛⟩. This estimate is iteratively optimized by a 
classical controller altering the parameter, 𝜃, to minimize the expectation value of 
⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩.

As evident, the VQE algorithm uses a quantum 
subroutine inside a classical minimization task. The quantum subroutine consists 
of two parts: Ansatz based Quantum State Preparation and Measurement of 
the Expectation Value of 𝐻.

Ansatz Selection

The ansatzes used in VQE are parameterized circuits, also known as Variational
Forms. There are three main criterion to keep in mind while defining an ansatz for 
a VQE problem set up:
1. Ideally, our 𝑛 qubit variational form would be able to generate any possible 

state |𝜓⟩ where |𝜓⟩ ∈ ℂ) and N = 2*.
2. The circuit depth for such ansatzes should be shallow to ensure maximum 

effectiveness in the NISQ era.
3. The number of parameters are as few as possible.

Parameter Optimization
Once an efficiently parameterized variational form has been selected, in 
accordance with the variational method, its parameters must be optimized to 
minimize the expectation value of the target Hamiltonian. There is no universal 
optimization scheme, and an appropriate optimizer should be selected by 
considering the requirements of the application.

Fig 1: High level schematic of the VQE algorithm

In our study, we explore the dynamics of changing each component used in the VQE routine by conducting sensitivity 
analyses on two performance metrics – time taken to solve the problem and accuracy of the solution. The principle 
problem that we investigate is that of finding the lowest eigenvalue of a Hamiltonian that is in the form of a 4 by 4 
Hermitian matrix. We use pyquil and qiskit as our primary tools for conducting the simulation experiments and 
matplotlib, numpy, and scipy for the ensuant data analysis.

The following section describes the various test cases we considered in our study. Each scenario was tested
independently of others keeping all other components set to a defined constant (base regime) to ensure validity and 
fairness of results.

Hamiltonian and Variational Forms:

We consider Hamiltonians as 4 by 4 Hermitian matrices. The type of Matrices we cover are Sparse, Dense, Symmetric, 
and Skewed.  The Hamiltonian’s are broken down into their Pauli term summations in the VQE circuit. Moreover, we 
also examine variational forms that utilize 𝑼𝟑 𝜃,𝜙,𝜆 , 𝑹𝑿, 𝑹𝒀, 𝑹𝒁 and 𝐒𝐰𝐚𝐩𝑹𝒁.

Preliminary Simulation Results

Circuit Depth and Optimizers:
We define circuit depth in this work as the number of repeating units of the ansatz. For certain problems this circuit 
depth becomes a parameter that needs to optimized and needs to be known a priori. Table 1 shows the classical 
optimizers used in our study.

Fig 2: Example of one of the Hamiltonians used Fig 3: Example of one of the variational forms used

Fig 4: Example showing a variational circuit depth of 3 Table 1: Optimizers used in the study 

Gradient Free Gradient Based

Nelder–Mead Simplex Gradient Descent

Simulated Annealing SLSQP

Genetic Algorithms SPSA

Exhaustive Search COBYLA

This study is a work in progress. We are still implementing and running multiple of the test cases 
that we have discussed about in this conference. After all the scenarios have been simulated and 
analyzed, we plan to create a normalized performance-compatibility metric function that leverages 
the implications of the study and distinguishes best performing and most compatible components 
needed for a given application of the VQE algorithm. Depending on the results of our simulation 
experiments, we, also, plan on developing a comprehensive VQE regime that can be 
recommended for Hamiltonians of one of the given forms studied in our work. Furthermore, we
plan on conducting similar studies on higher dimensional Hamiltonians and then repeat both 
studies with the Quantum Approximate Optimization Algorithm (QAOA).

Fig 5: Varying Ansatz in base regime

Fig 7: Percentage Accuracy while varying Ansatz

Fig 6: Varying Circuit Depth in base regime

Fig 8: Percentage Accuracy while varying Circuit Depth

The plots above show some of our preliminary work we conducted as a part of the study. For a 
base regime (default set up of the study), we vary the variational form utilized (ansatz) and 
analyze the phase space and base optimizer accuracy. We do the same but for different circuit 
depths. For the base regime, it is evident that the search space is very bumpy, and that certain 
Ansatz and circuit depths perform better than others (as expected). 


