
Transmittance of light through air-water boundaries at

different optical depths- A correction to the Lambert

Beer Equation

Dr. K Long, Sadman Ahmed Shanto

October 2018

Introduction:

In our paper, we have analyzed the path lengths of light waves as they travel through air-water boundaries.
The situation we modelled was that of light being scattered by the clouds and hitting the surface of a still
pond at various angles and reaching a certain point below the water surface.

We have used Lambert Beer’s equation to first model this situation and then we modelled the same
situation using our equation. Our equation takes in to account the refraction of light as it passes the air-
water boundary, and makes use of the rates of change of incident and refractive angles. The objective of our
paper is to test the accuracy of our model and compute the error factor between the two model (if any).

The Problem:

Figure 1: Illustration of problem

The problem is to calculate the total light reaching a certain point below the water surface on a cloudy
day. The point of evaluation was taken to be an arbitrary point A with position:

(x, y, z) = (0, 0, z)

Modelling assumptions used throughout both the models were as follows:
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• There was no wave motion on the surface of the water

• The sun was vertically above point A in the sky

• The temperature, density, and pressure of both air and water was assumed to be constant throughout

• The refractive index of water, nw was taken to be constant at all depths and was assumed to be 1.334

• The optical density of water was assumed to constant at all depths

• The light hitting the surface of the water was randomly scattered by clouds

Lambert Beer Model:

According to Lambert Beer law, light reaching a certain point in an optically dense medium is modelled by
the following equation:

p = p0e
an(z−z0)

where, p = number of photons per area, n = number of atoms per volume of media of transmission, a = is
the effective area of each atoms and z = depth of point that light reaches in the media.

For our problem, the Lambert Beer equation can be simplified into:

p = e−z (1)

Equation(1) calculates the total amount of light reaching point A.

Our Model:

Figure 2: Refraction of light Figure 3: Rate of change of dθa with respect to dθw

From Figure(3), we can write the path length, l, of the light ray as a function of z and θw:

l =
z

cos θw
(2)

Let Sa , be the light incident on the water surface per unit rad. Therefore, the total light hitting water at
any point is given by
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∫ π/2

−π/2
Sadθa = πSa (3)

Accounting for the refraction of the incident light rays and integrating over the region, where θw is between
(θmax,−θmax) where θw is measured from the normal. We get Equation(4), where R(l) represent the total
light reaching point A.

R(l) =

∫ θmax

−θmax
ekl

dθa
dθw

dθw (4)

Subsitituting l from Equation(2) into Equation(3), we get Equation(5):

R(z) =

∫ θmax

−θmax
e

−kz
cos θw

dθa
dθw

dθw (5)

In our modelling we have made extensive use of Snell’s law:

na sin θa = nw sin θw (6)

Taking the derivative of Snell’s law with respect to θ:

na cos θadθa = nw cos θwdθw

⇒ dθa
dθw

=
nw
na

cos θw
cos θa

From Equation(6), we can write cos θa as:

cos θa =

√
1− (

nw
na

)
2
(sin2 θw)

∴
dθa
dθw

=
nw
na

cos θw√
1− (nwna )2sin2 θw

(7)

At θmax, the angle of incidence, θa = Π
2 , which means that sin θa = 1. We also know that the refraction

index of water, nw = 1.334 and air, na = 1.

θmax = sin−1(
na
nw

sin θa)

n0 =
nw
na

= 1.334 (8)

⇒ θmax = sin−1(
na
nw

) = sin−1(
1

n0
)

∴ θmax = sin−1 (
1

1.334
)

Combining Equations (7) and (8) into Equation(5), we get Equation(9):

R(z) =

∫ θmax

−θmax

n0e
− kz

cos θw cos θw√
1− (n0 sin θw)2

dθ (9)

Let the quantity kz be ξ which represents optical depth. Equation(10) is, thus, a function of optical depth
and refractive index that calculates the total amount of light reaching point A in 2 dimensions.
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R(ξ, n0) =

∫ θmax

−θmax

n0e
− ξ

cos θw cos θw√
1− (n0 sin θw)2

dθ (10)

Equation(11) can be derived from Equation(10) by taking the integral of R(ξ, n0) over a circular area on
the surface of the water and using the polar jacobian. The integrand in Equation(11) models the path
lengths of light rays reaching point A in 3 dimensions.

R(ξ, n0) =

∫ θmax

−θmax

n0π sin θw cos θw√
1− (n0 sin θw)2

e−
ξ

cos θw dθ (11)

Equation (11) is the equation we use to calculate the total amount of light that reaches point A.

Analysis

In this section we compare the Equation(11) to the Lambert Beer Equation (Equation (1)).

We plotted the integrand from Equation(11) with respect against varying values for θmax from 0 to 2π
at different optical depths.

Figure 4: Plot of the integrand at different optical depths against various θmax

The figure shows how the path lengths of the light changes with different θmax values and at different
optical depths, z. The graph is discontinuous around θmax = arcsin( 1

1.334 ) just as we predicted and the
path lengths of light become exponentially shorter at higher optical depths.
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At optical depth= 0, R(0, n0) = 0.749625. Using this result, we can normalize Equation(11) into
Equation(12):

R(ξ, n0)

R(0, n0)
=

∫ θmax
−θmax

n0e
− ξ

cos θw cos θw√
1−(n0 sin θw)2

dθ

0.749625
(12)

Plotting Equation(12) and Lambert Beer Equation (Equation(1)) against optical depths, ξ(0.01, 10) by
using a log-log plot we get Figure(5):

Figure 5: Log-log Plot of R(ξ,n0)
R(0,n0) (blue curve) and e−z (yellow curve) against ξ from 0.01 to 10

From Figure(5), we can see that both the equations agree till about optical depth of 0.10. At higher optical
depths, there is a significant difference between the two equations. This difference is due to the accounting
for refraction of light in Equation(11) and not in Equation(1), making Equation(11) and our model more
accurate than that of Lambert Beer’s.

In order to measure this error in the Lambert Beer Model we plot the ratio of Equation(11) and
Equation(1) against varying optical depths, ξ(0.01, 10).

Figure 6: Log-log Plot of R(ξ,n0)
R(0,n0)/e

−z against ξ from 0.01 to 100
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From Figure(6), we can see that at optical depths greater than 0.1 , the Lambert Beer equation starts to
differ greatly from our Equation(11). At around ξ = 7 Equation 1 yields results that differ from ours by a
factor of approximately 2. The error rate increases even more rapidly at higher optical depths.

Conclusion:

Our analysis has shown that our Equation(10) is more accurate than Equation(1) at higher optical depths.
It can be said that the Lambert-Beer Equation is an approximation to our equation at lower optical depths.
It has also proven that taking into the refraction of light significantly affects the results at higher optical
depths. Our equation, thus, is of importance to fields of marine ecology, chemistry, optics and any subject
matter that involves systems with high optical depths and sensitivity.
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