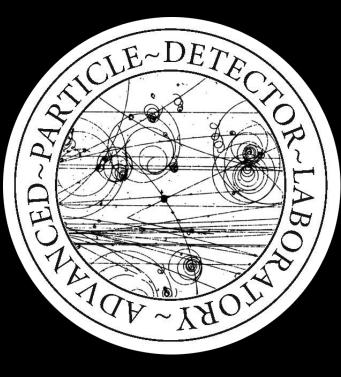


MACHINE-LEARNING ASSISTED MUON TOMOGRAPHY

Sadman Ahmed Shanto

Advanced Particle Detector Laboratory

Department of Physics & Astronomy, Texas Tech University


TEXAS TECH UNIVERSITY Department of Physics & Astronomy

MACHINE-LEARNING ASSISTED MUON TOMOGRAPHY

<u>Outline</u>

- Muon Tomography
- Muon Detection System
- Muon Telescope
 - Prototype 1a
 - Prototype 1b (Current)
- Muon Tracking
- Analysis Software Design
- Recurrent Neural Networks
- Image Segmentation

Muon Tomography

- Muon Tomography Technique that utilizes muon scattering and muon absorption to generate images of large objects such as buildings, volcanoes, and ancient archaeological structures
- Muon images contain both density and shape information of objects
- Non-invasive way of imaging using a natural source

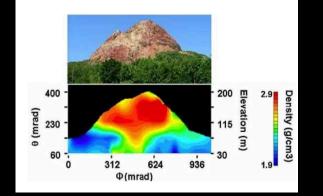


Fig 1. Top: Showa-Shinzan Lava Dome. Bottom: Density Distribution

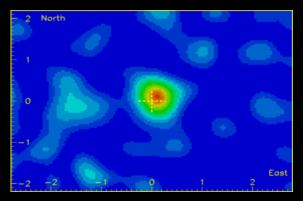


Fig 2. The Moon's Cosmic Ray Shadow detected by the Soudan II detector

Muon Detection System

- The muons are generated in cosmic ray showers
- When they pass through scintillators, the create scintillation photons
- These photons are detected by PMTs or SiPMs and converted into electrons
- The DAQ system comprises a readout electronics circuit that determines muon hits

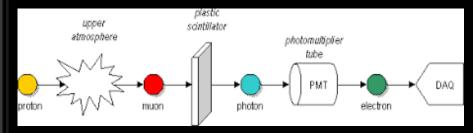


Fig 1. Schematic summarizing the muon detection process

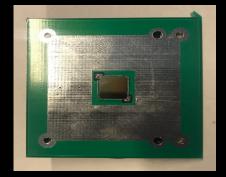


Fig 2. EJ – 200 Scintillator Bars

Fig 3. Silicon Photo Multiplier (SiPM)

- Telescope 2 layered system with each tray containing the following components
- Scintillator bars (5 x 5 x 60 cm³), silicon photomultipliers (SiPM), Winston Cone light collectors, Readout Electronics and a network of Arduinos (DAO).
- Size: 90 cm by 180 cm
- Reference: https://aip.scitation.org/doi/abs/10.1063/10.0002046

Fig 1. 2 Layers of

Scintillator Bars

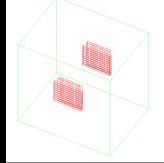

Fig 3. Muon Telescope

Fig 4. Muon Telescope rotated 45 degrees

Fig 2. SiPMs and the DAQ

Muon Telescope: Prototype 1b

- Similar set up to Prototype 1a
- PMTs
- Optical Cookies
- CAMAC (DAQ)
- New Tomogram Generation Schema

Fig 1. Optical Cookies

Fig 2. CAMAC DAQ

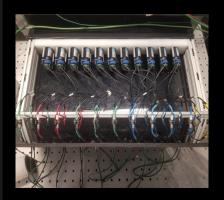


Fig 3. PMTs installed on a tray

Fig 4. Prototype 1b Test Set Up

Data Acquisition System (DAQ)

• DAQ – Communication system that allows us to efficiently transfer data from the start to finish via wireless communication.

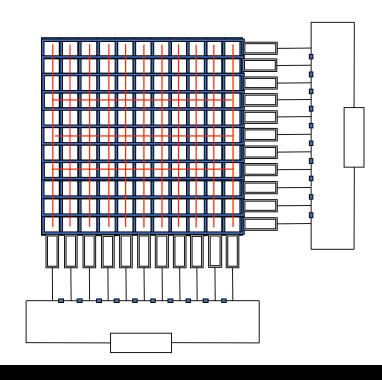
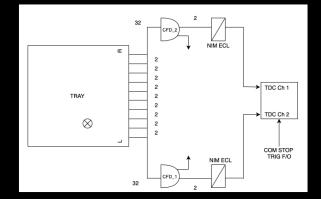



Fig 1. DAQ Pipeline.

Data Acquisition System (DAQ)

- DAQ Communication system that allows us to efficiently transfer data from the start to finish via wireless communication.
- CAMAC Crates
- ADC Modules
- TDC Modules
- Scaler Module

Fig 1. DAQ Signal Processing.

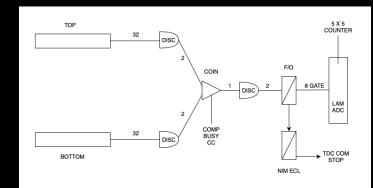


Fig 2. DAQ Trigger Process.

- TDC Signal Distribution
- 2 Channels Per Layer

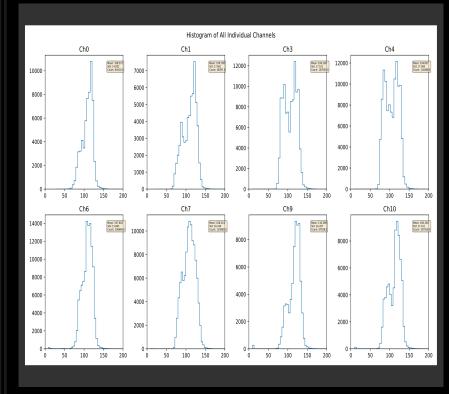


Fig 1. TDC Distribution of Channels

- TDC Difference
- Peaks Channels

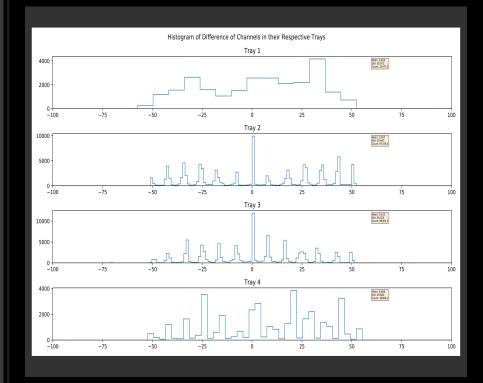


Fig 1. TDC Difference Plots for Individual Trays

- Definition of Asymmetry
- 2D Asymmetry Plot
- Asymmetry to Spatial Location

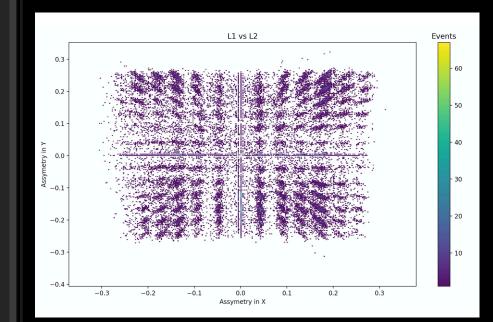
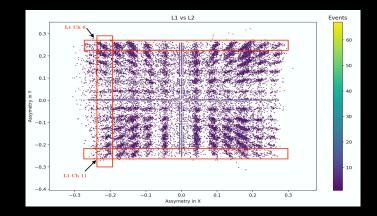



Fig 1. Asymmetry Plot of Layer 1 (Horizontal) vs Layer 2 (Vertical)

- Extracting Muon Hits
- Sum of TDC as Indicator of Muon Hit Cluster Position

Fig 1. Isolating Events from Asymmetry Values

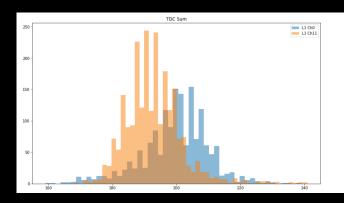
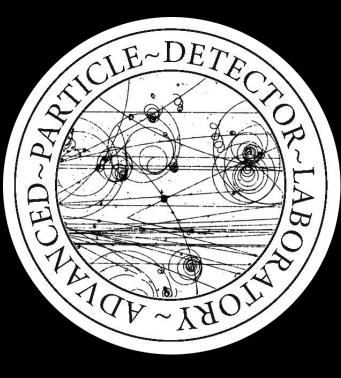



Fig 2: Sum of TDCs of Isolated Events

MACHINE-LEARNING ASSISTED MUON TOMOGRAPHY

<u>Outline</u>

- Muon Tomography
- Muon Detection System
- Muon Telescope
 - Prototype 1a
 - Prototype 1b (Current)
- Muon Tracking
- Analysis Software Design
- Recurrent Neural Networks
- Image Segmentation

Analysis Software Design: DAQ Controller

- Interfaces with CAMAC Crates and Modules
- Automated Data Storage
- Diagnostic Tests and Plots

```
configModule = "NuralTest'
         maxEvents = totalEvents
         maxTimeSec = 0
        runNumber = test num
        outputFile = "test{}.bin".format(test num)
          if maxEvents < 0:</pre>
        if maxTimeSec < 0:
            print("Invalid run time (can not be negative)"
            print("Starting DAQ system....")
            print("Process will take roughly {} min".format(1))
            print("Process will take roughly {} mins".format(wtime))
         channels_to_plot = ((2, 0), (2, 1), (2, 3), (2, 4), (2, 6), (2, 7), (2, 9),
         nBins = 100
        updateAfterHowManyEvents = 10
        verticalSpaceAdjustment = 0.4
         adcHisto = ADCHisto(nBins, updateAfterHowManyEvents,
                           verticalSpaceAdjustment, channels_to_plot)
         tdcHisto = TDCHisto(nBins, updateAfterHowManyEvents,
                           verticalSpaceAdjustment, channels to plot)
        plotUpdater = plotDiagnostics(doPlot, adcHisto, tdcHisto)
NORMAL testRun.pv
                                                                                                                 unix | utf-8 | python 31% 34:1
                                   Fig 1. Screen Capture of DAQ Code
```

Analysis Software Design: Event Display

- Identify Event Channels
- Approximate Locations
- Estimate and Create Tracks

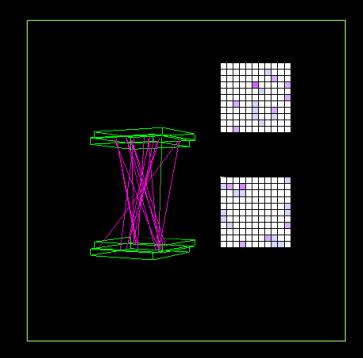
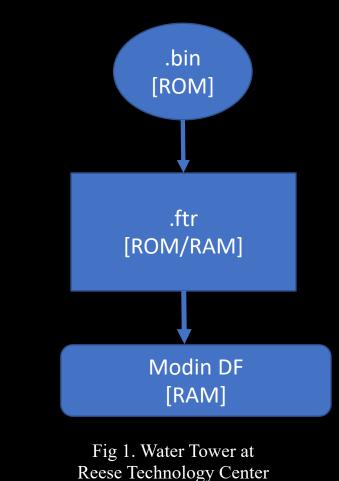
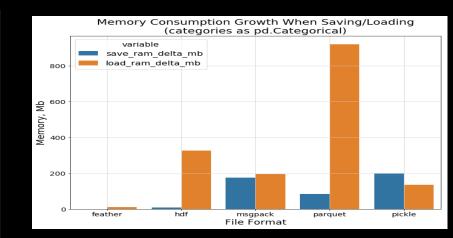



Fig 1. Figure Showing Event Display for a Sample Run


Analysis Software Design: Data Pipeline

- Raw Data .bin
- Processed Data .ftr
- Data Structure *Modin DataFrame*

Analysis Software Design: Computational Efficiency

- Python (Cythonized)
- Numba
- Feather file format
- Modin vs PyROOT
- Parallelization
- Vectorization

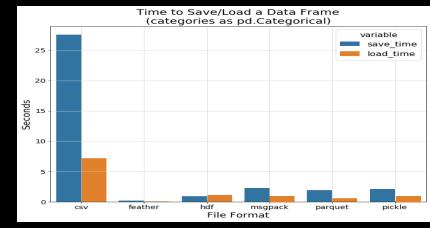
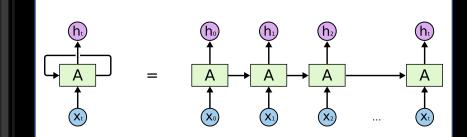
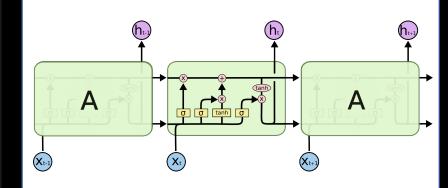


Fig 1. I/O Speed comparisons

Analysis Software Design: GUI Analysis Program


- Customized Functionality
- Automated Report Generation
- Fast and Dirty Analysis

Grapher																			
																		Ĩ	
	n / // h				ĮįĮ	***	4		Histogram of deadtime										
н	istogram	Scatter	Line	Bar	Box	Violin	Scatter 3D		30000								Nean: 1842.096 Std: 1049.964 Count: 200000.0		
He	eatmap C	Ontour	O Pie	Splom					25000										
					Cloud			,	20000 Acuentos 4 15000										
					Name x				و 15000 ع										
á	ADC asymL1 asymL2	Type object float64 float64 float64		^	<pre>color facet_row facet_col</pre>				10000										
	asymL4 deadtime diffL1	float64 int64 float64		Ŧ					5000			ŀ							
	Custom Kw	args		Res	et		Finish				2000		4000	6000		8000	10000		
DataFra	me Filter	s Statis	stics F	Reshapei	•														
index	event_nu	ım e	vent_tim	e		dead	itime	ADC				TDC							
0	0	2	2020-10-16 17:32		35.058359	753 [[1 31 32 33 29 21 26 6 7 16 16 23]					TDC [array([0, 87]) array([1, 131]) array([3, 80]) array([4, 130]) array([6, 91]) array([7, 133]) array([9, 134]) array([10, 80])]						
	1	1 2020-10-16 17:32		35.348410	0 1066		[1 31 32 33 29 21 26 6 7 16 16 23]				[array	[array([3, 110]) array([4, 93]) array([6, 109])]							
1		2 2020-10-16 17:32		35.498669 3362		[1 31 32 33 29 21 26 6 7 16 16 23]				[array([1, 130]) array([3, 87]) array([4, 121]) array([6, 95]) array([7, 129]) array([9, 130])]									
2	2	2	020-10-1									[array([0, 99]) array([3, 95]) array([4, 126]) array([6, 96]) array([7, 129]) array([9, 122])]							
	2				35.838763	812		[131323	33 29 21 2	66716	16 23]					, 126]) ar	ray([6, 96])		


Fig 1. Screen Capture of GUI

Recurrent Neural Networks

- Ideal for Sequential Data
- Reposes next-step hit predictions as regression problem
- Uses LSTM (Long Short Term Memory) network for powerful non-linear sequence modeling capabilities
- Reference: arXiv:1810.06111v1

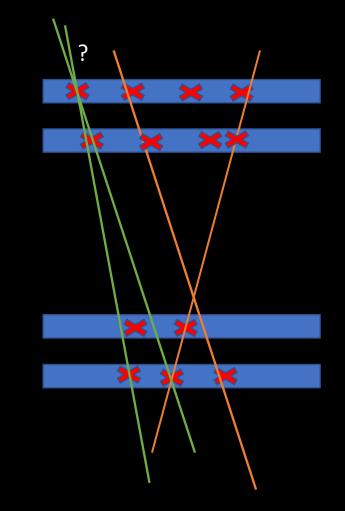

Fig 1. RNN Structure

Fig 1. LSTM Cell Structure

Recurrent Neural Networks

- Input: Sequence of hit coordinate
- Processing: For every element, a prediction of the position of the next hit conditioned on its position and the preceding hit positions.
- The learning problem: *multi-target* regression problem
- The model is trained with a mean-squarederror loss function.
- We train model on tracks that hit all 4 detector layers.
- Reference: arXiv:1810.06111v1

Image Segmentation (IS)

- Purpose: train a neural network to output a pixel-wise mask of the image
- Idea:
 - Extract shape of Object of Interest using digital image
 - Leverage IS to transform Tomogram data to enhance resolution
- Popular Technique in Medical Imaging

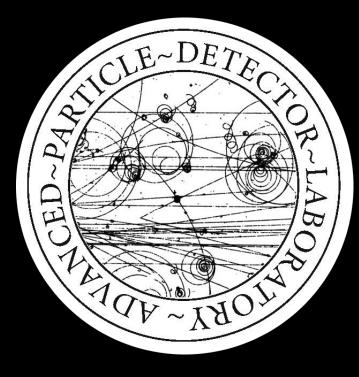


Fig 1. Application of IS on digital image data

Looking Forward

- Implementation and Analysis of ML
- Lead Brick Experiment
- Comprehensive Software Package Development
- Muon Parity Study

Questions?

